Acta Cryst. (1961). 14, 75

Some AB₃ compounds of the transition metals. By A. E. DWIGHT, J. W. DOWNEY and R. A. CONNER, JR., Argonne National Laboratory, Lemont, Illinois, U.S.A.

(Received 2 May 1960 and in revised form 15 July 1960)

1. Introduction

An investigation is underway to identify new intermetallic compounds of AB_3 composition. This paper presents crystal structure data for fifteen AB_3 compounds which have been studied since those reported in a paper by Dwight & Beck (1959).

2. Experimental methods

Alloys were made by arc melting 3- or 5-gram charges in a water-cooled copper crucible. All alloys were found to be sufficiently brittle that powder could be made by hammering the cast buttons in a closed carbide die. After screening through silk cloth, specimens of powder were wrapped in Mo foil, sealed in evacuated Vycor capsules and annealed. Diffraction patterns were taken on a Straumanis-type Debye–Scherrer camera of 114.6 mm. diameter. The Nelson–Riley extrapolation was used on patterns of the cubic Cu_3Au -type compounds to obtain

Table 1. AB_3 compounds with the Cu₃Au-structure, Ll₂, space group Pm3m

AB_3	a_0	AB_3	a_0	AB_3	a_0
ScRh ₃	3.900 Å	YPt_3	4∙075 Å	$ThRh_3$	4·139 Å
$ScPd_3$	3.981	$LaPd_3$	4.235	URh_3	3·991
$ScPt_3$	3.958	$HoPd_3$	4.064	UIr ₃	4.023
YPd.	4.074	HoPt.	4.064	-	

Table 2. AB_3 compounds with close packed ordered structures

AB_3	Type	c_0	a_0	c/a
ThPd,	TiNi ₂	9·826 Å	5·856 Å	1.678
VPd,	TiAl	7.753	3.847	2.015
VPt ₂	TiAl	7.824	3 ·861	2.027
HfAĬ.	ZrAl	17.155	3.989	4.301

Table 3. Powder diffraction data for ThPd₃, DO₂₄, Cr $K\alpha$ radiation, space group P6₃/mmc

hkl	d_o	d_c	Io	I_c
102	3.506 Å	3·523 Å	w	30.9
110	2.910	2.927	vvw	17
200	2.526	2.535	vw	15.9
004	2.444	$2 \cdot 450$	vs	78.5
202	2.247	2.252	vs	200
203	1.997	2.003	8	46.4
114	1.876	1.879	w	10
212	1.782	1.785	vw	9.9
204	1.759	1.762	w	10.7
205	1.5485	1.5506	ms	24.8
220	1.4624	1.4636	8	62.9
304	1.3903	1.3912	vw	6.7
206	1.3722	1.3730	8	72.3
312	1.3509	1.3516	vw	7.8
$\{224\\401\}$	1.2566	1.2565	vs	192
401 J 402	1.2272	1.2571 1.2271	8	104.5
$207 \\ 008 $	1.2251	1.2255	8	66•6
403 J	1.1819	1.1817	ms	51.5

Table 4.	Powder	diffraction	data for	• VPd	l_3 and	VPt ₃ ,	DO22,
	$\operatorname{Cr} K \alpha$	radiation,	space gr	roup	14/mm	im -	

		VPd_3			${\rm VPt}_{\bf 3}$		VNi ₃ *
hkl	$\overline{I_o}$	d_o (Å)	d_c (Å)	$\overline{I_o}$	<i>d</i> _o (Å)	d_c (Å)	Io
002				vvw	3 ·86	3.912	vvw
101	w	3.427	3.446				w
110	vvw	2.70	2.720	vw	2.711	2.730	vvw
112	vs	$2 \cdot 219$	2.227	vs	$2 \cdot 228$	$2 \cdot 239$	vs
103	vw	$2 \cdot 142$	$2 \cdot 145$		_		vvw
004	m	1.933	1.938	m	1.949	1.956	m
200	ms	1.919	1.923	8	1.923	1.930	ms
202	vw	1.719	1.723	w	1.726	1.731	vvw
211	w	1.678	1.680	w	1.703	1.686	vw
114	vvw	1.576	1.579	w	1.588	1.590	vvw
$105 \\ 213 $	w	1.430	$1 \cdot 438 \\ 1 \cdot 432$				vvw vw
204 Ó	8	1.364	1.365	8	1.3724	1.3740	8
220	ms	1.359	1.360	ms	1.3636	1.3649	ms
222	w	1.284	1.283	w	1.2879	1.2888	vvw
301	w	1.265	1.265	vw			vvw
310	w	1.2163	1.2165	w	1.2205	1.2208	
116	8	1.1672	1.1672	vs	1.1765	1.1767	
312	vs	1.1606	1.1606	vvs	1.1653	1.1654	
215	m	1.1518	1.1518				

* VNi₃ data from Pearson & Hume-Rothery (1952).

Table 5. Powder diffraction data for DO₂₃-type compounds

		$\frac{\mathrm{HfAl}_{3}}{\mathrm{Cr}\ K\alpha}$	$\operatorname{ZrAl}_{3}^{*}$ Cu $K\alpha$
hkl	$\overline{I_o}$	d_o	Io
004	m	4.25	<i>s–m</i>
101	ms	3.86	s-m
103	m	3.25	8
110	m	2.81	8
105	ms	2.592	s-m
114	vs	2.351	st
008	m	2.143	m-st
200	ms	1.993	st
204	m	1.810	8
211	m	1.774	8
109;00,10	m	1.722	8
213	m	1.707	8
215	m	1.581	8
208	8	1.460	m-st
217	w	1.442	888
220	ms	1.410	s-m
224	m	1.339	888
301	w	1.325	<i>888</i>
219;20,10	ms	1.302	8
11, 12	8	1.275	m
310	m	1.261	88
10, 13	m	1.253	88
305	m	1.239	888
314	vs	$1 \cdot 2096$	m-st
228	vs	1.1780	m
307	vw	1.1683	
20, 12	ms	1.1619	888
316	ms	1.1540	

* ZrAl₃ intensities taken from Brauer (1934).

a more accurate lattice parameter. Cohen's least-squares method was applied to the hexagonal and tetragonal patterns.

3. Experimental data

The compounds and lattice parameters found in this investigation are listed in Tables 1 and 2. The observed and calculated intensities and d spacings for ThPd₃ of the hexagonal TiNi₃-type are given in Table 3. Table 4 lists the observed and calculated d spacings and observed intensities for two compounds, VPd₃ and VPt₃, of the TiAl₃-type. No intensity calculations were made for VPd₃ and VPt₃, but the observed intensities for these compounds are in good agreement with those published by Pearson & Hume-Rothery (1952) for the VNi₃ compound. The intensities observed by Pearson & Hume-Rothery for VNi₃ are reproduced in Table 4.

Table 5 lists similar data for the HfAl₃ compound, which is isostructural with ZrAl₃. No intensity calculations were made for HfAl₃, but the observed intensities for HfAl₃ are in good agreement with Brauer's data for ZrAl₃, considering that the HfAl₃ intensities were obtained with Cr $K\alpha$ radiation, and the ZrAl₃ intensities with Cu $K\alpha$.

4. Discussion

With the discovery that $ThPd_3$ has the $TiNi_3$ structure, it is noted that the sequence of compounds $TiPd_3$, $ZrPd_3$, $HfPd_3$, $ThPd_3$ and UPd_3 are isostructural. Likewise, the series $TiRh_3$, $ZrRh_3$, $HfRh_3$, $ThRh_3$ and URh_3 all have the Cu₃Au structure. The two compounds VPd_3 and VPt_3 are isostructural with VNi_3 . VPd_3 was previously reported by Koster & Haehl (1958).

The TiAl₃ family of compounds, of which VPd₃ and VPt₃ are members, has been indexed in the older literature with respect to two different unit cells. In this investigation we use the smaller unit cell proposed by Pearson & Hume-Rothery (1952) for VNi₃. The c_0 parameters are the same for the two unit cells; the a_0 parameters are related by the factor $1/\sqrt{2}$.

The compound $HfAl_3$ is closely related to the $TiAl_3$ type compounds, as was shown by Brauer (1934). The structure of $HfAl_3$ may be envisioned as containing two $TiAl_3$ unit cells stacked end to end with one inverted, and with certain layers rippled in the $HfAl_3$ structure as opposed to flat layers in the $TiAl_3$ structure.

The authors wish to acknowledge helpful discussions with Dr M. V. Nevitt. This work was performed under the auspices of the U.S. Atomic Energy Commission.

References

BRAUER, G. (1934). Z. Anorg. Chem. 242, 1.

DWIGHT, A. E. & BECK, P. A. (1959). Trans. Amer. Inst. Min. (Metall.) Engrs. 215, 976.

KOSTER, W. & HAEHL, W. (1958). Z. Metallk. 49, 647.

PEARSON, W. B. & HUME-ROTHERY, W. (1952). J. Inst. Met. 80, 641.

Acta Cryst. (1961). 14, 76

Structure cristalline du chloro 9-bromo 10-anthracène par diffraction des rayons X. Par M. HOSPITAL, Laboratoire de Minéralogie et de Rayons X, Faculté des Sciences, Université de Bordeaux, France

(Reçu le 15 juillet 1960)

Le chloro 9-bromo 10-anthracène est isomorphe du dibromo 9-10 anthracène (Trotter, 1958). Les mailles tricliniques sont très semblables.

	Dibromo 9-10 anthracène (Trotter)	Chloro 9-bromo 10-anthracène
a	$8,88 \pm 0.02$ Å	$8,87 \pm 0,02$ Å
ь	$16,15 \pm 0,04$	$16,14 \pm 0,03$
с	$4,06 \pm 0,01$	$4,06 \pm 0,01$
α	$97^{\circ} \ 05' \pm 10'$	$97^{\circ} 10' \pm 10'$
β	$100^{\circ} 21' \pm 10'$	$100^{\circ} \ 39' \pm 10'$
γ	$98^{\circ} 50' \pm 10'$	$98^{\circ} \ 27' \pm 10'$
v	559,3 Å ³	558,2 Å ³

Densité mesurée: 1,75 g.cm.⁻³. Densité calculée: 1,735 g.cm.⁻³.

Les noyaux anthracéniques occupent exactement les mêmes positions dans les 2 structures. Les molécules présentent un centre de symétrie comme dans le dibromo 9-10 anthracène.

La structure du chloro 9-bromo 10-anthracène est une

structure statistique analogue à celle du chloro 1-bromo 4-benzène (Klug, 1947). Les atomes lourds sont des atomes mixtes: $\frac{1}{2}(Br + Cl)$.

La distance C_9 -atome lourd est de $1,88 \pm 0,01$ Å, intermédiaire entre $C_9-Cl = 1,74$ Å dans le dichloro 9-10 anthracène (Trotter, 1959) et $C_9-Br = 1,93$ Å du dibromo 9-10 anthracène (Trotter, 1958). Les atomes de carbone C_9 et C_{10} du noyau anthracénique sont cependant bien localisés et ne sont pas déplacés vers le chlore comme semble l'exiger la différence de 0,2 Å entre la liaison C-Br et la liaison C-Cl.

Les déformations du noyau anthracénique que l'on peut constater dans la structure du dibromo 9-10 anthracène (Trotter, 1958) se conservent intégralement dans la structure du chloro 9-bromo 10-anthracène.

Références

KLUG, A. (1947). Nature, Lond. 160, 570. TROTTER, J. (1958). Acta Cryst. 11, 803. TROTTER, J. (1959). Acta Cryst. 1, 54.